Re-Evaluation of a Bacterial Antifreeze Protein as an Adhesin with Ice-Binding Activity
نویسندگان
چکیده
A novel role for antifreeze proteins (AFPs) may reside in an exceptionally large 1.5-MDa adhesin isolated from an Antarctic Gram-negative bacterium, Marinomonas primoryensis. MpAFP was purified from bacterial lysates by ice adsorption and gel electrophoresis. We have previously reported that two highly repetitive sequences, region II (RII) and region IV (RIV), divide MpAFP into five distinct regions, all of which require mM Ca(2+) levels for correct folding. Also, the antifreeze activity is confined to the 322-residue RIV, which forms a Ca(2+)-bound beta-helix containing thirteen Repeats-In-Toxin (RTX)-like repeats. RII accounts for approximately 90% of the mass of MpAFP and is made up of ∼120 tandem 104-residue repeats. Because these repeats are identical in DNA sequence, their number was estimated here by pulsed-field gel electrophoresis. Structural homology analysis by the Protein Homology/analogY Recognition Engine (Phyre2) server indicates that the 104-residue RII repeat adopts an immunoglobulin beta-sandwich fold that is typical of many secreted adhesion proteins. Additional RTX-like repeats in RV may serve as a non-cleavable signal sequence for the type I secretion pathway. Immunodetection shows both repeated regions are uniformly distributed over the cell surface. We suggest that the development of an AFP-like domain within this adhesin attached to the bacterial outer surface serves to transiently bind the host bacteria to ice. This association would keep the bacteria within the upper reaches of the water column where oxygen and nutrients are potentially more abundant. This novel envirotactic role would give AFPs a third function, after freeze avoidance and freeze tolerance: that of transiently binding an organism to ice.
منابع مشابه
Structural basis of antifreeze activity of a bacterial multi-domain antifreeze protein
Antifreeze proteins (AFPs) enhance the survival of organisms inhabiting cold environments by affecting the formation and/or structure of ice. We report the crystal structure of the first multi-domain AFP that has been characterized. The two ice binding domains are structurally similar. Each consists of an irregular β-helix with a triangular cross-section and a long α-helix that runs parallel on...
متن کاملIce-binding proteins that accumulate on different ice crystal planes produce distinct thermal hysteresis dynamics
Ice-binding proteins that aid the survival of freeze-avoiding, cold-adapted organisms by inhibiting the growth of endogenous ice crystals are called antifreeze proteins (AFPs). The binding of AFPs to ice causes a separation between the melting point and the freezing point of the ice crystal (thermal hysteresis, TH). TH produced by hyperactive AFPs is an order of magnitude higher than that produ...
متن کاملA Ca2+-dependent bacterial antifreeze protein domain has a novel beta-helical ice-binding fold.
AFPs (antifreeze proteins) are produced by many organisms that inhabit ice-laden environments. They facilitate survival at sub-zero temperatures by binding to, and inhibiting, the growth of ice crystals in solution. The Antarctic bacterium Marinomonas primoryensis produces an exceptionally large(>1 MDa) hyperactive Ca2+-dependent AFP. We have cloned,expressed and characterized a 322-amino-acid ...
متن کاملA Ca2+-dependent bacterial antifreeze protein domain has a novel β-helical ice-binding fold
AFPs (antifreeze proteins) are produced by many organisms that inhabit ice-laden environments. They facilitate survival at sub-zero temperatures by binding to, and inhibiting, the growth of ice crystals in solution. The Antarctic bacterium Marinomonas primoryensis produces an exceptionally large (>1 MDa) hyperactive Ca2+-dependent AFP. We have cloned, expressed and characterized a 322-amino-aci...
متن کاملTwo Dimensional Structural Analysis and Expression of a New Staphylococcus aureus Adhesin Based Fusion Protein
Objective(s) Staphylococcus aureus is a foremost source of numerous nosocomial and community acquired infections. Antibiotic therapy for vancomycin resistant S. aureus (VRSA) can not promise the eradication of infections. Since adhesion is the major route of infections, adhesin based vaccine could suppress S. aureus infections. Fibronectin binding protein A (FnBPA) and clumping factor A (ClfA)...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 7 شماره
صفحات -
تاریخ انتشار 2012